Prüfung Wavelets 1252
Prüfer: Prof. Dr. Große-Erdmann
Note: 1.0
Schwerpunkte:
Ablauf der Prüfung:
Was ist ein Wavelet?
Zulässigkeitsbedingung
Zulässigkeitsbedingung ist sehr technisch, einfachere Bedingung?
Was macht man mit Wavelets?
Analyse von Signalen (Zeit-Frequenz-Analyse)
Was ist ein Signal?
Wie wird es analysiert?
kontinuierliche Wavelet-Transformation, Formel
Interpretation der kont. Wavelet-Transformierten
Probleme der kont. WT
Redundanz
Synthese / Umkehrung der kont. WT, Formel
Übergang zur diskreten WT?
Kenntnis des Signals anhand von Funktionswerten der WT an abzählbar vielen Gitterpunkten im Phasenraum
Passend verschobene und dilatierte Versionen des Wavelets
diskrete WT: Formel
gewünschte Eigenschaften von Wavelets für einfache Synthese
festes Frame, bzw. Orthonormalbasis
Synthese bei Orthonormalbasis, Konvergenzfragen
Wie kann man orthonormale Wavelets finden?
Definition Multiskalenanalyse
Wie kommt man von der Multiskalenanalyse zum orthonormalen Wavelet?
Zerlegung des L2 in orthogonale Unterräume, Bedeutung der Skalierungsfunktion, Skalierungsgleichung
Satz von Mallat und Meyer, warum konvergiert die Reihe?
Wavelets in der Praxis:
Mallat-Algorithmus mit Formeln, Zusammenhang mit Daubechies-Wavelets
Herr Große-Erdmann legt Wert darauf, dass er nicht alles aus der Nase ziehen muss. Man sollte den roten Faden des Kurses verfolgen können und an den entscheidenden Stellen die Details beherrschen. Herzstück sind die Punkte 14 bis 17, die sollte man sicher beherrschen und frei wiedergeben können. Entgegen der Ankündigung wurde nichts zu den verschiedenen Wavelet-Familien gefragt, es kann aber sicher nicht schaden, deren Konstruktion grob wiedergeben zu können.